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Summary

� The mitochondrial electron transport chain (ETC) includes an alternative oxidase (AOX) that

may control the generation of reactive oxygen species (ROS) and reactive nitrogen species

(RNS). ROS and RNS act as signaling intermediates in numerous plant processes, including

stomatal movement.
� The role of AOX in controlling ROS and RNS concentrations under both steady-state and

different stress conditions was evaluated using Nicotiana tabacum plants lacking AOX as a

result of RNA interference. A potential functional implication of changes in ROS and RNS

homeostasis was also evaluated by examining stomatal function.
� The leaves of nonstressed AOX knockdowns maintained concentrations of H2O2 and nitric

oxide (NO) normally seen in wildtype plants only under stress conditions. Further, guard cell

NO amounts were much higher in knockdowns. These guard cells were altered in size and

were less responsive to NO as a signal for stomatal closure. This, in turn, compromised the

stomatal response to changing irradiance.
� The results reveal a role for AOX in stomata. A working model is that guard cell AOX respi-

ration maintains NO homeostasis by preventing over-reduction of the ETC, particularly during

periods when high concentrations of NO acting as a signal for stomatal closure may also be

inhibiting cyt oxidase respiration.

Introduction

Mitochondria are energy powerhouses of the plant cell (Millar
et al., 2011). They use an electron transport chain (ETC) to oxi-
dize NAD(P)H and generate a proton motive force across the
inner mitochondrial membrane that drives phosphorylation of
ADP to ATP. A secondary consequence of ETC activity is the
leakage of single electrons to O2, producing superoxide (O2

�).
This reactive oxygen species (ROS) may then be converted to
another ROS, H2O2, by superoxide dismutase. The rate of elec-
tron leakage increases as membrane potential increases and ETC
components become more highly reduced. Such an over-reduc-
tion can occur when substrate supply to the ETC is high, when
electron transport is slowed by a slow rate of ATP turnover, or
when the capacity of an ETC component(s) is compromised,
perhaps by stress or an inhibitory molecule (Møller, 2001).

It is now recognized that mitochondria are also a source of
reactive nitrogen species (RNS). For example, single electron
leakage may occur from over-reduced ETC components to
nitrite, producing nitric oxide (NO) (Modolo et al., 2005;
Poyton et al., 2009; Gupta et al., 2010). NO may subsequently
react with O2

�, producing another RNS, peroxynitrite. How-
ever, while single electron leakage at complex I and complex III is

generally regarded as the major means of O2
� generation by

mitochondria, the site(s) and mechanism(s) of NO generation
remain poorly understood (Gupta et al., 2010).

Reactive oxygen species and RNS are signaling molecules
involved in controlling a wide range of plant processes, often acting
in conjunction with one another (Neill et al., 2002; Apel & Hirt,
2004; Foyer & Noctor, 2009; Baudouin, 2011; Suzuki et al.,
2012; Scheler et al., 2013). Reflective of this, the synthesis and deg-
radation of ROS and RNS occur by multiple pathways and within
multiple cell compartments. H2O2 and NO have emerged as the
signature ROS and RNS signaling molecules. While the metabo-
lism of H2O2 is reasonably well understood (Foyer & Noctor,
2009), the primary pathways responsible for synthesis and degrada-
tion of NO remain elusive (Gupta et al., 2010).

Mitochondria are suggested to act as ‘signaling organelles’ able
to influence processes such as nuclear gene expression and resis-
tance to biotic and abiotic stresses (Noctor et al., 2004; Sweetlove
et al., 2007; Cvetkovska et al., 2013; Schwarzl€ander & Finkeme-
ier, 2013). Certainly, mitochondria are capable of retrograde reg-
ulation, generating signals that control the expression of nuclear
genes encoding mitochondrial proteins. While the primary sig-
nals responsible for mitochondrial signaling remain unknown,
ROS and RNS are considered strong candidates.
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A feature of the plant ETC is the presence of two terminal
oxidases, the usual energy-conserving cytochrome (cyt) oxidase
(complex IV) and another termed alternative oxidase (AOX)
(Finnegan et al., 2004; Vanlerberghe, 2013). Electron transport
is bifurcated, such that electrons in the ubiquinone pool partition
between the cyt pathway (consisting of complex III, cyt c and
complex IV) and AOX. AOX directly couples ubiquinol oxida-
tion with O2 reduction to H2O. This activity reduces the energy
yield of respiration because, unlike complexes III and IV, AOX is
not proton pumping and hence does not contribute to membrane
potential.

Alternative oxidase is encoded by a small gene family, some
members of which are induced by abiotic and biotic stresses
(Considine et al., 2002; Clifton et al., 2006). In tobacco and
Arabidopsis, the partitioning of electrons to the stress-inducible
AOX1a isoform is subject to biochemical control (Millar et al.,
1993; Umbach & Siedow, 1993; Vanlerberghe et al., 1995;
Rhoads et al., 1998; Guy & Vanlerberghe, 2005). Through cova-
lent modification and allosteric mechanisms, AOX1a is biochem-
ically activated by a high reduction state of matrix NAD(P)H
combined with high concentrations of pyruvate. These are condi-
tions expected to occur when rates of upstream carbon metabo-
lism oversupply downstream electron transport to O2.

The nonenergy-conserving nature of AOX1a, along with the
biochemical controls that govern its activity, makes it well suited
as a means of preventing over-reduction of the ETC. Supporting
this, we recently showed that transgenic tobacco leaves lacking
AOX as a result of an AOX1a RNA interference construct have
increased concentrations of mitochondrial-localized O2

� and
NO, the products that can arise when an over-reduced ETC
results in electron leakage to O2 or nitrite (Cvetkovska & Vanler-
berghe, 2012). This interpretation is further supported by experi-
ments with the complex III inhibitor antimycin A. In wildtype
(WT) plants, antimycin A treatment increased both mitochon-
drial O2

� and NO, as the restriction of electron flow over-
reduces ETC components. However, in plants overexpressing
AOX, O2

� and NO do not increase in response to antimycin A
as these plants can maintain high rates of electron flow to O2,
even with the sudden reduction of complex III activity
(Cvetkovska & Vanlerberghe, 2013).

These findings provoke numerous questions, such as what
might be the dynamics of ROS and RNS in tobacco AOX knock-
downs under both steady-state and stress conditions? Further-
more, what might be the functional implication(s) of changes in
ROS and RNS in knockdown plants, given their roles in control-
ling numerous developmental, physiological and stress acclima-
tion responses? To address these questions, the current study
examines NO and H2O2 concentrations in knockdown plants in
response to disparate short-term and long-term abiotic stresses.
The study also examines a potential functional consequence of
the altered ROS and RNS dynamics. In particular, stomatal func-
tion is examined, as both H2O2 and NO are implicated as impor-
tant molecules in the signal transduction pathways that control
stomatal movements in response to environmental cues (Bright
et al., 2006; Wilkinson & Davies, 2010; Hancock et al., 2011;
Garc�ıa-Mata & Lamattina, 2013; Joudoi et al., 2013).

Materials and Methods

Plants and growth conditions

All experiments used tobacco plants (Nicotiana tabacum L. cv
Petit Havana SR1), including transgenic lines (RI9, RI29)
expressing an AOX1a RNA interference construct. We have pre-
viously shown that these knockdown lines have suppressed
amounts of AOX protein relative to the WT, even under strongly
inducing conditions (Amirsadeghi et al., 2006; Wang et al.,
2011; Wang & Vanlerberghe, 2013). Seeds were germinated in
vermiculite, and 2-wk-old seedlings were planted in a growth
medium (four parts soil (Pro-mix BX, Premier Horticulture,
Rivi�ere-du-Loup, QC, Canada) and one part vermiculite) and
transferred to controlled-environment chambers (Model PGR-
15, Conviron, Winnipeg, MB, Canada) with 16 h photoperiod,
temperature of 28 : 22°C (light : dark), relative humidity of
60% and photosynthetic photon fluence rate (PPFR) of
150 lmol m�2 s�1 (150 PPFR). Plants were irrigated daily and
fertilized four times each week with 1/10th Hoagland’s solution.
Plants were used at 3 wk after transfer to soil, using the fully
developed fourth or fifth leaves. To confirm that the knockdown
lines had less AOX than WT under the growth conditions, we
measured leaf O2 consumption in the presence of 30 lM
myxothiazol, an inhibitor of complex III. Under these condi-
tions, O2 uptake occurred at rates (mean� SE, n = 4) of
27.2� 1.6 (WT), 13.6� 0.7 (RI9), and 7.5� 0.6 (RI29) nmol
O2 mg�1 DW h�1.

Stomatal measurements

To examine the effect of different signaling molecules on sto-
matal closure, epidermal peels taken from the abaxial side of
well-watered plants during the light period were floated in an
‘opening buffer’ (10 mM MES-KOH, pH 6.15, 10 mM KCl,
50 lM CaCl2) for 1 h at 28°C and 150 PPFR. The peels
were then incubated for 1 h under the same conditions and
buffer, but including different concentrations of sodium nitro-
prusside (SNP), H2O2, ABA or salicylic acid (SA). Stomata
were then immediately observed and imaged by bright-field
microscopy using an Axiophot epifluorescent microscope
(Zeiss) fitted with a PCO 12-bit charge-coupled device (CCD)
camera and 409 objective (40X Plan Neofluar NA 0.75). Pore
length, width, and area were measured using Northern Eclipse
v. 5.0 software (EMPIX Imaging, Mississauga, ON, Canada).
Stomatal aperture is defined as the ratio of width to length.
Peels treated with only opening buffer were also used to estimate
guard cell size (area) using image analysis software (Volocity
6.1.1, Perkin Elmer, Woodbridge, ON, Canada). Within each
independent experiment, at least 30 stomata were analyzed for
each plant line and treatment, and all data represent the mean
of three independent experiments. The influence of drought on
stomata was studied similarly, except that peels were imaged
immediately, without any preincubation.

For stomatal density measurements, a thick layer of clear nail
polish was applied to the abaxial side of fresh detached leaves and
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left to dry 30 min. The nail polish was then carefully peeled from
the leaf and mounted on a slide. Slides were viewed and imaged
by bright field microscopy as described earlier but with a 59
objective (5X Plant Neofluar NA 0.15). Densities were deter-
mined using Image J (National Institutes of Health, Bethesda,
MD, USA) with the Cell Counter plugin. In each independent
experiment, at least two individuals were observed for each plant
line and treatment. At least five different fields of view (total area
of 4.7 mm2) were counted per individual. Stomatal index was
calculated as: number of stomata9 100/(number of sto-
mata + number of epidermal cells). All data are the means of
three independent experiments.

Stomatal NO was estimated using DAF-FM diacetate NO
indicator (D23844, Invitrogen) (Kojima et al., 1999). Epider-
mal peels were loaded with 10 lM DAF-FM (in 10 mM
KH2PO4, pH 7.4) in the dark at room temperature for
30 min. The peels were then washed twice for 10 min with
10 mM KH2PO4 (pH 7.4) under the same conditions. The
peels were then immediately observed with a LSM510 META
laser-scanning confocal microscope (Carl Zeiss) and appropri-
ate excitation/detection settings (488/500–530 nm). All images
were acquired using the same microscope settings. The inten-
sity of DAF-FM fluorescence of individual guard cells was
then estimated by image analysis software (Volocity 6.1.1),
using the threshold values set during image acquisition and a
minimum object size of 1 lm2. In a control experiment, when
epidermal peels were pretreated with SNP (2 mM, 30 min,
28○C), it dramatically increased subsequent guard cell DAF-
FM fluorescence, while cotreatment with both SNP and the
cell-permeating NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-
tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, 200 lM) dra-
matically reduced the subsequent DAF-FM signal (Supporting
Information, Fig. S1).

Gas-exchange analyses

A portable system (Model GFS-3000; Heinz Walz GmbH,
Effeltrich, Germany) with leaf cuvette was used to measure
CO2 exchange at 28°C and 60% relative humidity in attached
leaves at 4–5 h into the light period. Light was provided
through red and blue LEDs (Model 3055-FL, Heinz Walz
GmbH). Gas flow rate was set to 750 lmol s�1 and impeller
speed to step 7. For light response curves, net CO2 assimila-
tion rate (An) was measured at intervals over the range of
0–2000 PPFR, with CO2 supplied at a concentration of
400 lmol C mol�1. An was determined after 6 min at a par-
ticular PPFR. Stomatal conductance (gs) was estimated as: 1.6
(An)/(Ca – Ci), where Ca and Ci represent CO2 concentrations
in air and leaf intercellular space, respectively (Farquhar &
Sharkey, 1982). For CO2 response curves, An was measured at
saturating irradiance (1600 PPFR), and with CO2 supplied at
a range of concentrations (with 2 min at each concentration)
in the following sequence: 400, 50, 100, 200, 300, 400, 400,
600, 800, 1000 and 1200 lmol Cmol�1. The initial measure
at 400 was not used and the following two repeated measures
at 400 were averaged.

Quantitative real-time PCR

For each independent experiment, equal FWs of leaf from two
individuals were combined and used for RNA extraction, follow-
ing the method described by Vanessa et al. (2008). DNA was
eliminated from RNA samples using RNase-free DNaseI.
Extracted RNA had A260/A280 ratios > 1.9. First-strand cDNA
was synthesized using SuperScript II reverse transcriptase accord-
ing to the manufacturer’s instructions (Invitrogen). Quantitative
real-time PCR utilized SYBR Green (Invitrogen). The efficiency
and specificity of each gene-specific primer pair (listed in Table
S1) was confirmed beforehand. EF1 was the internal reference
gene used to normalize between samples. Three technical repli-
cates were used per sample. All data are the means of five inde-
pendent experiments.

Other methods

An oxyhemoglobin-based biochemical assay to measure leaf NO
and a xylenol orange-based biochemical assay to measure leaf
H2O2 were performed exactly as previously described
(Cvetkovska & Vanlerberghe, 2012). To measure leaf water loss,
leaves were detached from plants, weighed immediately and then
incubated at 150, 500 or 900 PPFR. Leaves were then weighed
periodically over 8 h. Statistical analyses were done using Prism
5.0 (GraphPad Software Inc., La Jolla, CA, USA).

Results

Using biochemical assays, we measured leaf concentrations of
NO and H2O2 in WT tobacco and two knockdown lines (RI9,
RI29) with suppressed amounts of AOX. At their growth irradi-
ance (150 PPFR), well-watered plants lacking AOX maintained
significantly higher concentrations of NO and significantly lower
concentrations of H2O2 than WT (Fig. 1). NO was 2.5-fold
higher in RI9 and 2.4-fold higher in RI29 than WT (Fig. 1a).
Conversely, H2O2 was only 43 and 51% of WT in RI9 and
RI29, respectively (Fig. 1b).

As NO and H2O2 act as signal molecules in the control of
stomatal opening and closing, we examined whether their
altered amount in knockdown plants was impacting stomatal
function. At their growth irradiance (150 PPFR), WT and
knockdown plants showed no differences in gs (Fig. 1c) or An

(Fig. 1d). Further, there was no obvious difference between
lines in the rate of FW loss from detached leaves incubated at
150 PPFR (Fig. S2a).

These results indicated that knockdown plants were able to
maintain normal stomatal function at their growth irradiance
(150 PPFR) despite the altered concentrations of NO and H2O2,
suggesting potential compensating mechanisms. We therefore
compared the stomata of well-watered WT and knockdown
plants. First, we found no differences in stomatal density, epider-
mal cell density, or stomatal index between plant lines (Fig. S3).
Next, epidermal peels were incubated in an ‘opening buffer’
under conditions that induce stomatal opening. After incubation,
we found that stomatal pore area was c. 23% lower in
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knockdowns than in WT plants (Fig. 2a). Guard cell area, pore
length, and pore width were each also significantly reduced in the
knockdowns (Fig. 2b–d). Nonetheless, stomatal aperture (pore
width : length ratio), the usual measure of degree of stomatal
opening, was similar between WT and knockdowns after incuba-
tion in the opening buffer (Fig. 2e).

Next, stomatal closing assays were used to establish the respon-
siveness of guard cells to signaling molecules known to promote
closure. These signaling molecules included NO and H2O2 as
well as SA and ABA. Epidermal peels preincubated with opening
buffer were subsequently treated for 1 h with different concentra-
tions of signal molecule and analyzed.

As expected, incubation of WT peels with increasing concen-
trations of NO (0, 0.1, 1, 5, 10 mM SNP) induced closure,
defined by the decline in stomatal aperture (Fig. 3a). However,
the knockdown lines were largely unresponsive to NO, with even
the highest concentration resulting in little closure (Fig. 3a). After
incubation in opening buffer, the pore area of both knockdown
lines was significantly less than that of the WT (Fig. 3b) as a
result of the differences in guard cell size (see earlier). However,
owing to the differential response of stomatal aperture of WT
and knockdown plants to NO, their pore areas were similar after
treatment with 10 mM SNP (Fig. 3b).

Incubation of WT peels with increasing concentrations of
H2O2 (0, 0.1, 0.5, 1.0, 5.0 mM) also induced closure, as seen by
the drop in stomatal aperture (Fig. 3c). However, unlike the case
with NO, the stomata of knockdown plants showed a similar
decline in stomatal aperture in response to H2O2 as the WT.
Hence, the pore area of the knockdowns remained significantly
lower than WT, even at the highest H2O2 concentration
(Fig. 3d).

The stomata of WT and knockdown lines also responded simi-
larly to increasing concentrations of ABA (0.0, 0.05, 0.1, 1.0,
5 lM), which induced some closing even at the lowest concentra-
tion tested (Fig. 4a). Given the similar stomatal response across
plant lines, the knockdowns maintained a significantly smaller
pore area than WT across all but the highest ABA concentration
tested (Fig. 4b). At 5 lM ABA, the pore area was still highest in
the WT, although the difference between it and the knockdowns
was no longer statistically significant.

Stomatal aperture also responded to SA, tested at concentra-
tions of 0.0, 0.1, 1.0, 5.0, and 10 mM. All lines appeared to
respond similarly to low concentrations of SA, while the stomatal
aperture of WT declined more than in knockdowns at high SA
(5.0 and 10.0 mM) (Fig. 4c). Hence, at low concentrations of SA
(up to 1 mM), pore area was significantly higher in the WT than
in both knockdowns, while at high concentrations of SA (5 and
10 mM), pore area no longer differed between lines (Fig. 4d).

Overall, the results suggested that AOX knockdowns with
increased steady-state leaf concentrations of NO (Fig. 1a) were
compensating for this, at least in part, through reduced sensitivity
of their stomata to closure by NO (Fig. 3a). We next evaluated
whether this change in stomatal signaling properties would
impact stomatal responses to environmental cues. First, we exam-
ined responses to short-term irradiance shifts, where plants grown
at 150 PPFR were transferred to 500 PPFR for 30 min, and then
from 500 to 900 PPFR for another 30 min.

The 30 min irradiance treatments resulted in changes in NO
and H2O2 across the plant lines (Fig. 1). H2O2 declined in the
WT with each irradiance shift, while remaining relatively stable
in the knockdowns. Hence, the large difference in H2O2 concen-
tration between WT and knockdowns at their growth irradiance
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was abolished at high irradiance (Fig. 1b). After the shift to 500
PPFR, NO increased 1.4-fold in WT and remained high after
transfer to 900 PPFR (1.3-fold higher than at growth irradiance)
(Fig. 1a). On the other hand, NO in knockdowns was stable after
transfer to 500 PPFD, while increasing at 900 PPFR. This was
particularly the case in RI29, where NO was 1.4-fold higher at
900 than at 150 PPFR. Nevertheless, the large significant differ-
ence in NO between the WT and knockdowns was maintained
at all irradiance intensities (Fig. 1a).

In order to easily compare the relative changes in NO and
H2O2 in response to irradiance, Fig. S4 normalizes the NO and
H2O2 concentrations of each plant line at 150 PPFR to values of
1. This figure also includes summing the relative amount of these
signal molecules (i.e. relative NO +H2O2). This analysis shows
that while the shift to 900 PPFR resulted in a 14% decline in
NO +H2O2 in WT (compared with 150 PPFR), conversely it
saw an 18% increase in NO +H2O2 in knockdowns.

The shift to 500 PPFR resulted in a similar increase in An in
each plant line (Fig. 1d). In each line, An increased further at 900
PPFR but was now slightly lower in RI9 than in WT and signifi-
cantly lower in RI29 than in WT. Changes in gs mirrored the
changes in An (Fig. 1c). gs was similar across lines at 500 PPFR
(albeit slightly lower in knockdowns) while at 900 PPFR, gs was
significantly lower in RI29 than in WT. These results were corrob-
orated by a comparison of light response curves (0–2000 PPFR).
At 900 PPFR and higher irradiances, An was lower in RI29 than
in WT, while RI9 showed an intermediate response (Fig. S5a).
Similarly, gs was lower in RI29 than in WT at high irradiances,
with RI9 again showing an intermediate response (Fig. S5b).

The lower An in knockdowns at 900 PPFR and above sug-
gested either a stomatal or biochemical limitation of photosyn-
thesis in the plants lacking AOX. To distinguish between these
possibilities, we measured An as a function of Ci under saturating
light (1600 PPFR). The An/Ci curves were indistinguishable

between plant lines, evidence that the differences in An between
WT and knockdowns at high PPFR results from a stomatal limi-
tation in knockdowns (Fig. S6).

These analyses were supplemented by examining FW loss of
detached leaves. While no differences were evident between lines
at 150 PPFR (see earlier), WT leaves tended to dry out slightly
faster than the knockdowns at 500 PPFR (Fig. S2b) and this
effect became more pronounced at 900 PPFR (Fig. S2c).

Besides examining short-term responses of stomata to irradi-
ance, we also evaluated a longer-term response of stomata to envi-
ronmental cues by subjecting plants growing at 150 PPFR to a
progressive decline in water availability. This was done by ceasing
irrigation of plants for up to 4 d. We have previously shown that
this treatment reduces the leaf relative water content (RWC) of
each plant line from c. 88% in well-watered plants (day 1, 1 d
after last watering) to 79% in drought-stressed plants (day 4, 4 d
after last watering) (Wang & Vanlerberghe, 2013).

In well-watered plants grown at 150 PPFR, there were signifi-
cant differences in the amount of both NO and H2O2 in the two
knockdown lines compared with the WT (Fig. 1). However, after
4 d of drought, the NO amount at 150 PPFR was similar between
lines as a result of a large increase in NO in WT but only a
modest increase in knockdown lines, compared with well-watered
plants (Fig. 5a). The amount of H2O2 in drought-stressed plants
at 150 PPFR was also now similar across lines, in this case as a
result of a large decline in WT, combined with increase in the
knockdowns, compared to well-watered plants (Fig. 5b). Despite
these changes, gs and An at 150 PPFR did not differ across plant
lines (Fig. 5c,d), similar to the case in well-watered plants.

Epidermal peels were used to determine stomatal aperture and
pore area of both well-watered and drought-stressed plants
(Fig. 6). In this case, the peels were analyzed directly, without any
preincubation. Nonetheless, the aperture of well-watered plants
(day 1) was similar to that of peels first incubated in opening
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Fig. 4 Effects of ABA (a, b) and salicylic acid
(SA) (c, d) on stomatal aperture (a, c) and
stomatal pore area (b, d) of wildtype (WT)
tobacco (Nicotiana tabacum) and two
knockdown lines (RI9, RI29) with reduced
alternative oxidase. WT, white circles; RI9,
closed triangles; RI29, closed squares.
Epidermal peels were treated to induce
stomatal opening and then incubated with
different concentrations of ABA or SA for 1 h,
after which time stomatal aperture and pore
area were measured, as described in the
Materials and Methods section. At least 30
stomata were analyzed in each experiment
and for each plant line and treatment. Data
are the mean� SE from three independent
experiments (n = 3). Data were analyzed by
two-way ANOVA followed by a Bonferroni
post-test to compare, at each concentration,
the WT to each transgenic line.
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buffer (compare Fig. 2e with Fig. 6a). As before, there was no sig-
nificant difference in the aperture between knockdown lines and
the WT (Fig. 6a) and hence the pore area of knockdowns was sig-
nificantly lower than that of the WT as a result of the smaller
guard cell size of knockdowns (Fig. 6b). As expected, stomatal
aperture and pore area of WT plants decreased progressively
between day 1 and day 4 as drought severity increased. Stomatal
aperture in the knockdown lines acted similarly to the WT
throughout the 4 d time course and, as such, these plants tended
to maintain their slightly lower pore area, relative to WT (Fig. 6).
This result was significant on all days comparing WT with RI29
and on 2 d (day 1 and day 3) comparing WT with RI9.

To study the possible interactive effects of drought and irradi-
ance on stomatal responses, we shifted day 4 drought-stressed
plants at 150 PPFR to higher irradiances, similar to the experi-
ment on well-watered plants. In drought-stressed plants, the
shifts to higher irradiance (30 min at 500 PPFR followed by
another 30 min at 900 PPFR) had little impact on leaf NO and
H2O2 concentrations and no significant differences were found
between lines (Fig. 5a,b). However, large differences in An and gs
were now evident between lines at both 500 and 900 PPFR
(Fig. 5c,d). Lower An in the knockdowns at high irradiance again
suggested either a stomatal or biochemical limitation of photo-
synthesis, so we again examined An as a function of Ci. Unlike
with well-watered plants, the An of drought-stressed knockdown
plants remained much lower than that of WT plants, even at
equivalent Ci (data not shown). These results suggest a biochemi-
cal rather than a stomatal limitation of photosynthesis in
drought-stressed plants lacking AOX. As a biochemical limitation
of photosynthesis is likely to generate additional feedback

signaling effects on stomata (e.g. as a result of decreased CO2

demand), this experiment was not pursued further.
We examined the expression of select genes whose expression

has been previously linked in N. tabacum to changes in mito-
chondrial function or changes in the concentration of NO or
H2O2. The transcript of a gene encoding catalase and previously
identified as being specifically induced in tobacco by NO (Zago
et al., 2006) had similar relative abundance across plant lines and
in both well-watered and drought-stressed plants (data not
shown). The relative transcript abundance of a gene encoding
1-aminocyclopropane-1-carboxylic acid oxidase, previously iden-
tified in tobacco suspension cells as associated with mitochondrial
dysfunction (Maxwell et al., 2002) was reduced by drought, but
again was similar across lines, in both well-watered and drought-
stressed plants (data not shown). In both tobacco suspension cells
(Maxwell et al., 1999) and Arabidopsis leaves (Giraud et al.,
2008), it was shown that reduced AOX results in increased
expression of genes encoding pathogenesis-related (PR) proteins.
Similarly, we found that PR1a transcript abundance in well-
watered plants (day 1) was c. eightfold higher in the knockdowns
than in the WT (Fig. 7a). This difference in transcript abundance
between WT and knockdown plants was magnified further in
response to drought stress (day 4) (Fig. 7a). Despite the clear
trends, the relative expression of PR-1 was also highly variable
between experiments compared with each of the other genes
examined. Reduced mitochondrial function as a result of hypoxia
typically increases the amount of fermentation enzymes (Bailey-
Serres et al., 2012). We found that transcripts encoding pyruvate
decarboxylase (PDC) and alcohol dehydrogenase (ADH) were
perhaps slightly elevated by drought, but there was little
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Fig. 5 Leaf concentration of nitric oxide (NO) (a), leaf concentration of H2O2 (b), leaf stomatal conductance (gs) (c), and leaf net CO2 assimilation rate (An)
(d) of wildtype (WT) tobacco (Nicotiana tabacum) and two knockdown lines (RI9, RI29) with reduced alternative oxidase. These were drought-stressed
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difference between WT and knockdowns, in either well-watered
or drought-stressed plants (Fig. 7b,c).

Confocal microscopy and the NO-specific fluorescent probe
DAF-FM were used to directly evaluate the NO amount of guard
cells in well-watered plants. This analysis showed that DAF-FM
fluorescence (a measure of NO amount) was much higher in
knockdown that in WT guard cells (Fig. 8).

Discussion

Knockdown of alternative oxidase induces the ‘stress state’
of signaling molecule pools in tobacco leaf

Our analyses showed that, under nonstress conditions, AOX
knockdown plants maintained higher NO and lower H2O2 con-
centrations than WT plants. Significantly, the concentrations in
AOX knockdown plants fell within the range normally seen in
WT plants during disparate stresses (dotted lines in Fig. 9). In
other words, knockdown of AOX induced the ‘stress level’ of
these signaling molecules, even under nonstress conditions. After
application of stress (increased irradiance, drought, or the combi-
nation of both), H2O2 and NO concentrations were now

comparable between WT and AOX knockdown plants. The
exception to this was NO concentration in response to the short-
term irradiance stress. This stress maintained, and perhaps even
exaggerated further, the difference in NO concentration between
WT and knockdown plants.

In broad terms, the results suggest that AOX is important to
maintaining H2O2 homeostasis under nonstress conditions, but
not necessarily during stress. The reduced H2O2 concentration in
nonstressed knockdown plants compared with WT plants seems
paradoxical, as these plants exhibit increased mitochondrial O2

�

(Cvetkovska & Vanlerberghe, 2012, 2013), providing substrate
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pathogenesis-related protein 1a (a), pyruvate decarboxylase (b), and
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and two knockdown lines (RI9, RI29) with reduced alternative oxidase.
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for conversion to H2O2. Nonetheless, the H2O2 concentration is
governed by both its rate of synthesis and its degradation, and
knockdown of AOX in both tobacco and Arabidopsis is reported
to induce multiple H2O2-scavenging systems under normal
growth conditions (Amirsadeghi et al., 2006; Giraud et al.,
2008). In tobacco this may overcompensate for the lack of AOX,
in terms of H2O2 scavenging (Amirsadeghi et al., 2006; this
study). Conversely, overexpression of AOX in tobacco can sup-
press H2O2-scavenging systems, resulting in elevated H2O2 (Pa-
squalini et al., 2007).

Our results also indicate that AOX is important to maintain-
ing NO homeostasis under both nonstress and short-term irradi-
ance stress conditions, but not necessarily during drought stress
or when drought is combined with increased irradiance. Hence,
it is interesting that stomatal function was not compromised in
knockdowns during drought but was compromised by the irradi-
ance stress (see the following section).

Knockdown of AOX alters stomata and impairs stomatal
responses to increased irradiance

H2O2 and NO are implicated as key signaling molecules in the
signal transduction paths responsible for stomatal movements
(see the Introduction section). As AOX knockdown plants had
altered concentrations of these molecules, including much higher
NO in guard cells, we examined stomatal function. When mea-
sured under normal growth conditions, knockdowns had similar

gs, An, stomatal density, stomatal index, stomatal aperture, and
rate of water loss from detached leaves as the WT. However, their
guard cells were significantly smaller than those of WT plants
(meaning that knockdowns had a smaller measureable pore area
for gas exchange, despite the similar stomatal aperture) and were
less responsive to NO as a signal for closure.

The reduced responsiveness of the knockdown stomata to NO
is presumably to compensate for the constitutive high concentra-
tion of NO present in the guard cells of these leaves. We hypoth-
esized that knockdowns would similarly compensate for their
constitutive low H2O2 by increasing their responsiveness to
H2O2. However, we found no evidence for this, suggesting that
NO concentration prevails over H2O2 in terms of being a key
signal for closure. This interpretation aligns with prevailing mod-
els of stomatal signaling for closure, where NO acts downstream
of H2O2 (Bright et al., 2006; Srivastava et al., 2009; He et al.,
2013).

Salicylic acid is also described as a signaling molecule capable
of inducing stomatal closure, such as during plant–pathogen
interactions (Mateo et al., 2004; Melotto et al., 2006). The AOX
knockdowns were less responsive to SA as a signal for stomatal
closure and also showed elevated abundances of PR1a transcript.
These findings hint that SA (like NO) may be constitutively
higher in knockdowns. Interestingly, the regulation of PR1a
expression by SA involves the establishment of a more reduced
cellular redox state (high NADPH) and enhanced S-nitrosylation
of a key transcription factor (Spoel & Loake, 2011; Fu & Dong,
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Fig. 8 Nitric oxide amount in guard cells of wildtype (WT) tobacco (Nicotiana tabacum) and two knockdown lines (RI9, RI29) with reduced alternative
oxidase. These were well-watered plants grown at a photosynthetic photon fluence rate (PPFR) of 150 lmol m�2 s�1 (150 PPFR). (a) Representative guard
cell images. The left-hand panels show DAF-FM fluorescence (green color) while the right-hand panels show combined DAF-FM fluorescence (green) and
Chl autofluorescence (false coloration blue). (b) The total DAF-FM fluorescence associated with individual guard cells. WT, white bars; RI9, gray bars; RI29,
black bars. The data in (b) are the means� SE of three independent experiments and the analysis of c. 50 different stomata of each plant line. Data were
analyzed by one-way ANOVA followed by a multiple comparison test. Bars not sharing a common letter (a, b, c) are significantly different from one
another (P < 0.05).
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2013). Cellular redox state is conceivably more reduced in the
AOX knockdowns, and the high NO in these plants might pro-
mote S-nitrosylation reactions. To examine whether altered cellu-
lar redox state is impacting gene expression in the AOX
knockdowns, we determined the transcript abundance of genes
encoding the fermentation enzymes PDC and ADH. The expres-
sion of these genes is enhanced by hypoxia/anoxia, and while the
mechanism for these inductions is not fully understood, it may
result from changes in cellular redox state (Bailey-Serres et al.,
2012). However, while PDC and ADH expression did increase
slightly in response to drought, transcript abundances in each of
the plant lines were similar under both well-watered and drought
conditions. Despite the limited analysis, our data indicate that
some stress-related genes, in this case the SA-responsive PR1a
gene, are altered in plants lacking AOX. It would be interesting
to further examine the underlying mechanism for this change in
PR1 expression, which was also seen in both tobacco suspension

cells (Maxwell et al., 1999) and Arabidopsis leaves (Giraud et al.,
2008) lacking AOX.

Abscisic acid is a dominant signal for stomatal closure in
response to drought, and ABA-induced closure is reported to
occur by both NO-dependent and NO-independent pathways
(Lozano-Juste & Leόn, 2009; Hancock et al., 2011; Daszkowska-
Golec & Szarejko, 2013). The robustness of the ABA signal may
explain why both the responsiveness of knockdown stomata to
ABA in closure assays and the response of knockdown stomata to
progressive drought stress were both similar to WT, despite the
altered dynamics of NO and H2O2 in these plants.

The stomatal deficiency of AOX knockdown plants was
only revealed in response to the short-term irradiance stress
(shifts to higher PPFR). Under normal steady-state growth
conditions or during a longer-term stress (4 d of increasing
drought severity), the plants were able to compensate for this
deficiency, probably by multiple mechanisms including both
developmental changes (i.e. guard cell size) and physiological/
biochemical changes (i.e. altered responsiveness to some
signal molecules). The inability of stomata of knockdowns to
respond normally to the irradiance stress may be down to the
rapidity of this treatment, which resulted in significant short-
term changes in H2O2 and NO. It is probably too simplistic
to directly compare the changes in these signal molecules with
stomatal responses, and such an analysis is further complicated
by the altered responsiveness of the stomata of knockdowns to
NO. Nonetheless, the reduced gs of knockdown plants com-
pared with the WT after transfer to 900 PPFR may be
explained, at least in part, by the altered response of the
H2O2 and NO pools. While the sum of H2O2 +NO declined
in the WT after transfer to 900 PPFR (primarily because of
the drop in H2O2), the sum of these pools increased in
knockdowns (because of some increase in both H2O2 and
NO). Hence, these ‘closing signals’ were declining in the WT
in response to higher PPFR while conversely increasing in the
knockdowns.

Photosynthesis has been examined in Arabidopsis aox1a mutants
and knockdowns (Strodtk€otter et al., 2009; Zhang et al., 2010;
Florez-Sarasa et al., 2011; Yoshida et al., 2011; Gandin et al.,
2012). To our knowledge, stomata were not examined in detail.
One study did report that gs was similar between the WT and
aox1a mutant, while An/Ci curves showed a slightly reduced An in
aox1a, suggestive of a biochemical rather than a stomatal limita-
tion of photosynthesis in the mutant (Gandin et al., 2012). Our
finding of a stomatal defect in tobacco lacking AOX1a may be the
result of species differences or may indicate that a stomatal defect
in the Arabidopsis aox1a mutant has not been revealed, because of
the particular growth conditions or experiments performed.

Does composition of the mitochondrial electron transport
chain impact stomatal function through changes in ROS
and RNS dynamics?

Several disparate mutants with impaired complex I are reported
to display altered stomatal function. These include an Arabidopsis
DEXH box RNA helicase mutant (He et al., 2012), an
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Fig. 9 Leaf concentration of nitric oxide (NO) (a) and H2O2 (b) in wildtype
(WT) tobacco (Nicotiana tabacum) and two knockdown lines (RI9, RI29)
with reduced alternative oxidase. WT, white bars; RI9, gray bars; RI29,
black bars. The bars show the NO and H2O2 concentrations measured at a
photosynthetic photon fluence rate (PPFR) of 150 lmol m�2 s�1 (150
PPFR) in well-watered plants that had been grown at 150 PPFR (i.e.
nonstress conditions). The lower dotted lines in (a) and (b) represent the
concentrations of NO and H2O2, respectively, measured in WT plants
following an irradiance stress treatment (i.e. 30min at 500 PPFR followed
by another 30min at 900 PPFR). The upper dotted lines in (a) and (b)
represent the concentrations of NO and H2O2, respectively, measured in
WT plants after 4 d of drought stress. (Note that we have not shown a
third dotted line, to represent WT plants after the combined drought and
irradiance stress, as NO and H2O2 concentrations in both these cases were
almost identical (just slightly lower) to those found in the drought-alone
treatment. This model figure is meant to illustrate that the concentrations
of NO and H2O2 found in nonstressed RI9 and RI29 plants fall within the
range normally seen in WT plants during disparate stresses. These data are
from Figs 1 and 5.
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Arabidopsis RNA editing mutant (Yuan & Liu, 2012), and the
CMSII mutant of tobacco (Djebbar et al., 2012). Each of the
mutants displays altered ROS dynamics, suggesting a link
between ROS and stomatal function, reminiscent of the current
study. However, plants with defective complex I all showed
enhanced stomatal closure compared with WT during drought,
which improved their ‘drought tolerance’ by reducing water loss.
In the AOX knockdowns, however, changes in stomatal aperture
in response to drought were similar to WT plants, water loss
from detached leaves of drought-stressed knockdowns was similar
to the WT (data not shown), and all plant lines maintained simi-
lar progressive changes in leaf RWC over a 10 d drought treat-
ment (Wang & Vanlerberghe, 2013). These observations suggest
normal stomatal function and rates of water loss from AOX
knockdown plants under drought conditions. The cause of this
difference between complex I and AOX mutants is unknown, but
may relate to NO. Our work suggests that NO supersedes ROS
in terms of controlling stomatal function, and finds that NO con-
centrations are similar in drought-stressed WT and AOX knock-
downs. It would be interesting to examine the NO concentration
in the different complex I mutants under nonstress and stress
conditions.

Alternative oxidase may play a unique role in guard cell NO
homeostasis

Guard cells maintain a high overall respiratory activity (Vani &
Raghavendra, 1994), but relatively little else is known regarding
respiration in these specialized cells. It was recently reported that
several disparate mutants with increased SA display reduced sto-
matal aperture, which was attributed to increased ROS from a
source other than NADPH oxidase (Miura et al., 2013). Interest-
ingly, the study also found high abundances of AOX1a transcript
in guard cells and, through cluster analysis of several microarray
datasets, identified AOX1a as a gene of interest in the regulation
of stomatal movement.

Our results show that reduced AOX dramatically increases
guard cell NO, impacting stomatal function. We propose the fol-
lowing hypothetical working model, whereby AOX promotes
guard cell NO homeostasis in two related ways. First, AOX may
have a general role to prevent over-reduction of ETC compo-
nents, which might otherwise promote nitrite reduction to NO.
There is already evidence that this is a role of AOX in tobacco
mesophyll cells (Cvetkovska & Vanlerberghe, 2012, 2013). Sec-
ondly, as guard cells generate transient high concentrations of
NO to act as a key signal molecule controlling stomatal aperture,
these cells may be particularly prone during these transients to
inhibition of cyt oxidase. NO is a reversible inhibitor of cyt oxi-
dase at nanomolar concentration (Brown, 2001; Cooper, 2002).
Partial inhibition of cyt oxidase and electron flow by the high
NO being generated for signaling could then cause over-reduc-
tion of the ETC, favoring the generation of additional NO by
the respiratory chain itself, and more cyt oxidase inhibition (i.e. a
vicious circle promoting increased cyt oxidase inhibition). The
additional NO, and probably O2

�, from the respiratory chain
could then disrupt normal guard cell signaling. However, unlike

cyt oxidase, AOX is not inhibited by NO (Millar & Day, 1996),
meaning that it could act to maintain electron flow during any
transient period of cyt oxidase inhibition. AOX would essentially
act as an auxiliary respiratory pathway in cells normally subject to
periodic inhibition of cyt oxidase.

The location and biosynthetic pathway of NO synthesis for
guard cell signaling are unknown. Nonetheless, given the ease
with which NO crosses membranes, even an extramitochondrial
location of synthesis could elevate mitochondrial NO and inhibit
cyt oxidase, necessitating the need for AOX. There is even some
speculation that the mitochondrial ETC is the source of NO for
stomatal signaling (Wang et al., 2010). If this is the case, the
necessity of having AOX as an auxiliary respiratory pathway seems
even more apparent. In Arabidopsis, AOX expression is increased
by exogenous ABA (Ghassemian et al., 2008; Giraud et al., 2009;
Liu et al., 2010; He et al., 2012; Miura et al., 2013) and a molecu-
lar link between ABA and AOX1a expression is defined (Giraud
et al., 2009). In guard cells, this molecular link may ensure that
sufficient AOX is present to maintain electron flow when ABA
elevates NO concentration to promote stomatal closure. Further
experimentation, in particular using isolated guard cells with dif-
ferent amounts of AOX, could be used to test this model.
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Fig. S1 The effect of pretreatment of epidermal peels with an
NO donor and/or NO scavenger on the subsequent DAF-FM
fluorescence associated with tobacco guard cells.

Fig. S2 Fresh weight loss from detached leaves incubated at dif-
ferent irradiances, in WT tobacco and knockdown lines with
reduced AOX.

Fig. S3 Stomatal density, epidermal cell density, and stomatal
index of well-watered and drought-stressed plants of WT tobacco
and knockdown lines with reduced AOX.

Fig. S4 Relative changes in NO, H2O2, and NO +H2O2 in
response to short-term changes in irradiance, in WT tobacco and
knockdown lines with reduced AOX.

Fig. S5 An rate and gs at measurement irradiances of 0–2000
PPFR for WT tobacco and knockdown lines with reduced AOX.
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down lines with reduced AOX.
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